
Chapter 4

Attentional Resources and
Control

by Paolo Toffanin and Addie Johnson

How we select, modulate, and keep focused on information that
is relevant to behaviour is critical to understanding human perfor-
mance. Such diverse processes as memory storage and retrieval,
action selection, and decision making cannot be fully described with-
out consideration the role that attention plays in them. On the one
hand, attention is involved in the selection and modulation of in-
coming sensory information or information from memory. In this
sense, attention determines the fate of selected items. Items that
receive attention are processed more quickly and remembered better
than items that do not receive attention’s “boost” (Levin & Simons,
1997). On the other hand, because competition for attentional re-
sources is an integral part of most activities, attention is needed to
maintain goal-directed behaviour. The role of attention in modu-
lating sensory processes to select locations or objects in space was
discussed in Chapter 3. In this chapter, we consider the investment
of attentional resources across time and how internally generated
information–such as information retrieved from memory–is operated
on by attention in order to guide task performance. Whether driving
a car in the city or playing a game of Ultimate Frisbee R©, multiple
stimuli and options for action compete for selection, and attention is
needed to bias behaviour to fit action goals. Tasks differ in the ex-
tent to which they call on the ability to suppress irrelevant informa-
tion, maintain focus, or divide attentional resources. Understanding
and aiding task performance thus depends on a characterization of
which of these abilities is employed at any point in time. An under-
standing of the neural basis of attention sheds further light on how
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attention supports performance by maintaining focus, keeping task
goals active, and coordinating information processing. A topic in
attention particularly relevant to neuroergonomics is how attention
can be measured on-line so that the operator can be aided or the
task environment adapted to augment human performance.

4.1 Quantifying and Describing Attention

If we are to monitor human behaviour and adapt the task envi-
ronment to improve task performance, it is necessary to be able to
measure and characterize the different aspects of attention. The
measurement of attention is made complicated by the fact that at-
tention shifts are not always overt (i.e., not always accompanied by
eye movements) and by the fact that the task environments of real
interest–such as the cockpit or the control room–require that a range
of attentional abilities be deployed dynamically. Chapter 1 provided
an overview of the techniques most often used in basic research on
human performance. In this section, we cover how these techniques
have been applied to characterizing attention and, in particular, how
they might be used in realistic task environments.

4.1.1 Eye Movements and Pupil Diameter

The eyes may not be the mirror of the soul, but they tell us much
about how attention is allocated. As discussed in Chapter 1, eye
movements and attention are tightly coupled (Findlay, 2009). For
example, the attention-capturing, abrupt onset of an object drives
a saccade toward it (Ludwig & Gilchrist, 2002). These stimulus-
driven saccades are triggered by sensorial events and are automatic
in the sense that they occur even when they hurt task performance.
In fact, Theeuwes (2004, 2010) has argued that items in the visual
field capture attention according to their salience irrespective of the
task at hand, and that goal-driven control comes into play only after
capture has taken place. This view is based on the finding that when
a display contains a salient singleton, attention seems to be captured
by that singleton, thus increasing reaction times to the target (e.g.,
Theeuwes, 1992).

Voluntary, goal-driven saccades, such as those made in response
to a cue which indicates the possible location of a forthcoming tar-
get, serve the purpose of moving the eye to search for relevant infor-
mation or to bring that information into focus. In any environment
where eye movements are needed to bring information into focus,
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the patterns of saccades, or scan paths, can tell us much about how
attention is allocated. In addition to providing information about
what is looked at, and where, scan paths can be analysed to uncover
attentional strategies. According to one theory (Noton & Stark ,
1971a, 1971b) observers scan new stimuli during a first exposure
and store the sequence of fixations in memory as a spatial model.
This spatial model is the scanpath. During subsequent viewings of
the same stimulus, the scanpath is followed, at least in part, thus
facilitating stimulus recognition (Noton & Stark, 1971a, 1971b) or
search efficiency (Myers & Gray, 2010). The availability of new soft-
ware for computing and comparing scanpaths (Christino, Mathot,
Theeuwes, & Gilchrist, 2010) will likely lead to new insights into
how scanpaths can be used to predict performance.

Whereas eye movements allow us to infer where attention has
been allocated, the diameter of the pupil allows us to infer the degree
to which resources are invested in a task. The degree of engagement
of a person with a task (or with another person) is reflected directly
in the diameter of the pupil (Kahneman, 1973). The relationship
between pupil diameter and mental effort was first reported in depth
by Hess and Polt (1964), who measured pupil dilation during the
mental multiplication of two numbers. When the task was rela-
tively difficult (e.g., 16 x 23) pupil diameter was greater than when
the multiplication was relatively easy (e.g., 7 x 8). The so-called
task-evoked pupillary response (change in pupil diameter as a func-
tion of task requirements; Beatty, 1982) is computed from the raw
pupillary record in much the same way as an event-related potential
(ERP) is computed from electroencephalographic (EEG) activity
(see Chapter 1). The averaging process reveals short-latency (onset
100-200 ms), phasic, task-evoked dilations that terminate rapidly
when processing is completed.

Beatty (1982) reviewed several decades of work based on using
the task-evoked pupillary response to reveal the degree of difficulty
of perceptual, short-term memory, language, reasoning, and atten-
tion tasks. For example, the amplitude of the task-evoked pupillary
response is found to be reduced across a session in a vigilance task,
and the reduction in amplitude is similar to the reduction in perfor-
mance. More recently, Kristjansson, Stern, Brown, and Rohrbaugh
(2009) applied a polynomial curve-fitting method for quantifying
parameters from single task-evoked pupillary responses (TEPRs).
They used a multilevel-modeling framework to identify TEPR pa-
rameters associated with long latency responses (responses for which
alertness was presumed to be low) and normal latency responses
(presumably reflecting an alert state). Pupil diameter, linear pupil
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dilation rate, and curvilinear pupil dilation rate were found to differ
significantly between the long latency and normal latency responses,
leading Kristjansson et al. to suggest that these parameters might
be useful neurocognitive markers of operator state in an alertness
monitoring system.

4.1.2 Electroencephalography (EEG)

Whereas overt attentional shifts can be studied with eye movements,
covert shifts of attention (i.e., shifts in attention made without mov-
ing the eyes, head, or body; Posner, 1978) cannot. In combination
with behavioural measures such as reaction time and accuracy in
detection or identification tasks, EEG has been used extensively to
study the covert allocation of attention.

Event related potentials. The ERP and its components were in-
troduced in Chapter 1 (see Table 1-1). In general, the components
that occur early in the ERP, in particular the P100 and the N100,
are modulated in amplitude or latency depending on the degree
of attention given to the event used as the reference for comput-
ing the ERP (Eimer, 1994). Later ERP components, such as the
P300 (which reflects the identification of a target object), are mod-
ulated by attention in an all-or-none fashion. In the case of the
P300, it is absent for objects that must be ignored (Kok, 1999, Tof-
fanin, Johnson, & de Jong, 2011), and is delayed as a function of
increasing attentional demands (Dell’Acqua, Jolicoeur, Vespignani,
& Toffanin, 2005; Vogel & Luck, 2002). Some ERP components
are directly related to specific mechanisms of attention rather than
being modulated by attention. Four examples of such components
are the N2 posterior-contralateral (N2pc), the reorienting negativity
(RON), the ipsilateral-invalid negativity (IIN), and the P4 posterior-
contralateral (P4pc). The N2pc is a negative peak observed about
200 ms after target onset which reflects spatial shifts of visual at-
tention towards the target (Woodman & Luck, 1999) or attentional
capture (Kiss, Van Velzen, & Eimer, 2008). The RON (Schroger
& Wolff, 1998) is a negative deflection observed at fronto-central
sites between 400 and 600 ms after onset of a distracting event and
reflects the reorienting of attention towards task-relevant stimuli.
The INN (Hopfinger, 2005) is a negative-going waveform appearing
over ipsilateral-posterior scalp sites between 200 to 300 ms after the
appearance of a target at an uncued location. Hopfinger suggested
that INN reflects disengagement from an erroneously cued location
and reorienting towards the target location after the onset of the tar-
get. Because the INN is exogenously triggered, it seems to reflect
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exogenous disengagement, or disengagement evoked by the capture
of attention by another object. Toffanin et al. (2011) proposed that
endogenous attentional disengagement might be reflected by a pos-
itivity observed 400 ms after target onset at posterior-contralateral
sites (the P4pc). The P4pc can be interpreted as reflecting the un-
doing of attentional capture as required to prepare for the onset of
a forthcoming target.

An important paradigm for measuring the spatial allocation and
control of visual attention is the Posner cuing paradigm (Posner et
al., 1980). In this paradigm, observers are cued to direct attention
(while keeping the eyes at a central fixation point) toward the left
or right by the appearance of a cue in the left or right hemifield,
respectively. When the interval between the cue and target is short
(about 100 ms) and the cue is valid, such that the cue and target
appear on the same side, reaction time to the target is faster than
when the cue is invalid (i.e., when cue and target appear on differ-
ent sides). Posner and Petersen (1990) explained this cuing effect
in terms of a sequential model according to which attention must
be disengaged from the cued location on invalid trials before being
moved to the target location. A common finding using the Posner
cuing paradigm is that the P1 component of the ERP is enhanced
for targets in the cued versus uncued location (e.g., Hopfinger &
Mangun, 1998). Additionally, three ERP components (the early
directing attention negativity (EDAN); the anterior directing atten-
tion negativity (ADAN); and the late directing attention positivity
(LDAP); Eimer, Forster, & Van Velzen, 2003; Praamstra, Boutsen,
& Humphreys, 2005) have been identified as occurring in the time
interval between the onset of the cue and the onset of the target, and
therefore are thought to reflect the orienting of covert attention in
anticipation of an expected event. The EDAN is a negative deflec-
tion measured at occipital electrodes contralateral to the direction
indicated by the cue and is thought to reflect the decoding of the di-
rection indicated by the cue. The ADAN is a negativity observed at
frontal sites contralateral to the direction indicated by the cue and
is thought to reflect the initiation of an attentional shift. Finally,
the LDAP is a posterior positivity contralateral to the direction in-
dicated by the cue and seems to reflect preparatory activation of the
visual cortex in anticipation of the onset of the target.

Components such as the EDAN, ADAP, and LDAP may pro-
vide information about where attention will be allocated or how
information will be processed (Eimer et al., 2003). However, these
components are not always found when expected. It has been sug-
gested that the LDAP will only appear when attention-directing
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cues accurately indicate when a target will appear, which limits the
usefulness of the component as a predictor of readiness to process
visual information (Green & MacDonald, 2010). In this respect,
lateralized changes in alpha-band EEG oscillations (see Chapter 1),
which have also been linked to biasing of visual cortex in anticipa-
tion of an impending target (e.g., Worden, Foxe, Wang, & Simpson,
2000), may provide a more reliable index of upcoming performance.

EEG rhythmicity. Although ERPs have proven to be useful in
the study of the temporal dynamics of attention, they are limited
in that they fail to capture brain activity related to stimulus pro-
cessing that is not time-locked to event onset (i.e., induced activ-
ity, Tallon-Baudry & Bertrand, 1999), nor is it possible to draw
conclusions about how different brain networks (or regions of in-
terest) interact on the basis of ERPs alone. Both induced activity
and interactions between brain networks can be visualized using
time-frequency analysis of the EEG (Donner & Siegel, 2011, Fries,
2005). Time-frequency analysis involves quantifying the amplitude
(or power) of a certain frequency band across time. The frequency
band is determined by the experimenter, and typically includes fre-
quencies ranging from 0.1 to 100 Hz. One way of using the resulting
time-frequency spectrograms is to compare them for different ex-
perimental conditions much as one might compare fMRI images.
Another approach is to compute coherence values, that is, “correla-
tions” across time (i.e., autocorrelations) between regions of inter-
est covered by the electrodes used. These coherence values reflect
whether two or more regions of interest are in communication with
each other.

Time-frequency analysis has led to new insights about attention,
including how it is allocated. For example, Lakatos et al. (2009)
performed a time-frequency analysis of data recorded from primary
visual and auditory cortices in macaques performing a cross-modal
selective attention task. They observed that the amplitude of the
EEG response increased only in the modality-specific area corre-
sponding to the attribute of the stimulus to be attended. However,
supramodal modulation of the EEG by attention was also observed:
The phases of the oscillations in both cortices were synchronized to
the onset of the attended stimuli, regardless of the modality to be
attended.

The EEG rhythm most commonly coupled to attention mecha-
nisms is the gamma rhythm (30-100 Hz; Fries et al., 2001). Gradual
increases in the level of gamma synchronization have been found
to depend on the degree of attention directed toward a stimulus
(Khalbrock, Butz, May, & Schnitzler, 2012), suggesting that gamma
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rhythm could be used as a reliable measure of attentional allocation.
The relation between gamma-band synchronization and attention is,
however, likely to be more complex than a simple increase in syn-
chronization as a function of the amount of attention allocated. In
fact, gamma oscillations have been linked to oscillations at lower
frequencies, and the role of gamma oscillation in selecting informa-
tion may depend on interactions between gamma rhythms and lower
ones, such as the alpha and theta rhythm. For example, Fries (2009)
described the process of viewing natural scenes as one of segment-
ing the scene and selecting the relevant segment. In this context
segmentation is served by a lower rhythm (theta or alpha) and se-
lection by the faster gamma rhythm. Attention to, or enhancement
of, specific objects results from iterative loops in which the visual
scene is segmented at lower rhythms and the relevant segment is se-
lected with the faster rhythm until the object of interest is selected
and “in focus”.

Brain rhythms of other frequencies than the gamma band have
been related to the investment of resources. For example, high-
amplitude alpha rhythm is associated with a state of cortical “idling”
(i.e., a resting state) and lower alpha amplitude (desynchronization)
is associated with task engagement (Klimesch, 1999). Frontal theta
synchronization (which produces high amplitude theta rhythm), on
the other hand, is higher when engaged in a task (Gevins et al.,
1998). Beta has also been related to resources invested in a task,
with increased amplitude in the beta rhythm being related to in-
creasing task difficulty (Brookings et al., 1996) . Because alpha,
theta, and beta activity all are related to task engagement, Pope,
Bogart, and Bartolome (1995) proposed the engagement index, an
index of the workload associated with a task that combines infor-
mation about the alpha, beta, and theta rhythms according to the
formula (beta power / (alpha power + theta power) ). This in-
dex has been used experimentally in real-time to determine whether
an operator is overloaded or under-loaded while performing a task
(Freeman, Mikulka, Prinzel, Scerbo, 1999).

Steady State Evoked Potentials (SSEPs). An alternative way
of measuring attentional allocation can be seen as a compromise
between the use of ERPs and time-frequency analysis of the EEG.
This method involves measuring the steady-state potentials evoked
by rapidly changing, repetitive stimulation (Regan, 1989). Regan
(1966) introduced the steady-state evoked potential (SSEP) as a
means of overcoming some of the disadvantages of ERP analysis,
such as the sensitivity of the ERP signal to muscle or movement
artifacts and the difficulty of determining the spectral composition
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of the ERP. In this method, repetitive stimulation (such as a flashing
background of a certain frequency) evokes an ERP-like waveform in
the EEG which is repeated for the duration of the repeated stimulus,
and these repetitions increase the frequency resolution of the SSEP.
The power of the SSEP is thus concentrated within the frequency
band of the stimulation and can be easily extracted from noise.

An aspect of the SSEP that may make it especially useful in
neuroergonomic applications is that it is modulated by visuospatial
attention (e.g., Morgan et al., 1996). Use of the SSEP to track at-
tentional allocation is sometimes referred to as “frequency tagging”
(Tononi et al., 1998). For example, when two steams of visual infor-
mation are presented on backgrounds of two different frequencies,
and the observer is instructed to attend to either one stream or the
other, the amplitude of the SSEP is greater for the frequency at
the location to be attended. Moreover, the amplitude of the SSEP
reflects the amount of attention received by the object evoking the
SSEP, being greater when attention is selectively devoted to one
stream of information rather than divided across two streams of in-
formation (Toffanin, Johnson, de Jong, & Martens, 2009). Although
the relationship between attentional allocation and the visual SSEP
is robust, the link between the auditory SSEP and attentional allo-
cation is not as transparent: Some studies report modulation of au-
ditory steady-state responses by attention (e.g., Saupe, Widmann,
Bendixen, Muller, & Schroger, 2009), but others do not (e.g., de
Jong, Toffanin, & Harbers, 2010; Linden, Picton, Hamel, & Camp-
bell, 1987). Attending to the frequency of the oscillation (and not
just to the target stimulus) might be a necessary condition for mod-
ulation of the auditory SSEP by attention (Saupe et al., 2009). Al-
ternatively, many of the studies that have reported null effects of
attention on auditory SSEPs may have been confounded because
attention has an effect on the power of gamma band oscillations in
the visual areas but not in the auditory areas (Khalbrock et al.,
2012), and many auditory SSEP studies have used a 40-Hz (gamma
band) oscillation. More work on the efficacy of the SSEP as an index
of auditory attention is needed before conclusions as to the efficacy
of the measure can be reached.

4.1.3 Brain Networks and Functional Magnetic Resonance
Imaging

Many fMRI studies have been conducted in an attempt to pinpoint
which brain areas and networks are responsible for attentional se-
lection and attention orienting. As discussed in Chapter 1, two
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processing pathways are involved in visual processing, and each of
these may be modulated by attention. The occipito-temporal, or
ventral path, carries information regarding object identity from V1
and V2 in the occipital lobes to the inferotemporal cortex (IT) and
V4 where the object is “recognized”, and on to ventral area 46 in
the prefrontal cortex (PFC) if the recognized object is to be main-
tained in working memory (Deco & Zihl, 2006; Desimone & Duncan
1995). The occipito-parietal, or dorsal, path is involved in process-
ing the spatial location of the object. Information is carried from
V1 and V2 to the posterior parietal cortex (PPC), where object lo-
cation and the spatial relationship of an object with other objects
are processed. The dorsal part of area 46 in the PFC is involved in
maintaining the spatial location of the object.

The structures of the dorsal and ventral pathways illustrate the
dependency between working memory and attention (Knudsen, 2007;
Miller & Cohen, 2001). Information about the current target is as-
sumed to be stored in a template in area 46 of the PFC. The tem-
plate influences the competition between stimuli in V1 and V2 by
means of recurrent loops in PPC and IT. Endogenous or top-down
attention results from interaction between PFC, PPC, and IT: Feed-
back biases the primary visual areas to process information about
identity and location present in the template (for an extensive re-
views see Kastner & Ungerleider, 2002; Corbetta & Shulman, 2002;
Corbetta, Patel, & Shulman, 2008).

Functional MRI studies have revealed that the presence or ab-
sence of activity in PFC provides a measure of attention in terms
of cognitive control (Miller & Cohen, 2001). When performing a
repetitive task, with the passing of time the execution of the task
becomes increasingly automatic, as reflected by the withdrawal of
attention from the task. In other words, a consequence of practice
is the reduction of the need for active control in coordinating the
actions required to achieve a goal. This is reflected by a shift of cere-
bral activity: Whereas performance of a novel task is characterized
by interplay between frontal and parietal areas, automated tasks can
be performed relying on parietal areas only (Petersen, Mier, Fiez,
& Raichle, 1998). Miller and Cohen proposed that this shift stems
from withdrawing cognitive control from the areas necessary for the
task. PFC involvement is thus necessary for the coordination of the
different brain areas involved in performing a task when the task
is novel, but with practice new connections between task-relevant
areas are made, circumventing the need for cognitive control.
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4.1.4 Functional Near Infrared Spectroscopy (fNIRS)

Following its introduction in 1993 by Villringer, Planck, Hock, Schleinkofer,
and Dirnagi, fNIRS (see Chapter 1) has become an increasingly pop-
ular measure of attention (Huppert, Hoge, Diamond, Franceschini,
& Boas, 2006). The portability and user-friendliness of fNIRS are
promoting its popularity among neuroergonomists.

That fNIRS is a reliable index of the investment of resources in a
task was shown in a study by Ayaz et al. (2012). As mentioned in
Chapter 1, fNIRS measures changes in concentration of oxygenated
and deoxygenated haemoglobin. Therefore, increases in resource in-
vestment should be reflected by a relative increase in oxygenation
when comparing high versus low task load conditions. To establish
the reliability of fNIRS as an indicator of mental workload (defined
as the difference between the resources available to the operator and
the resource demand of the task), Ayaz et al. monitored fNIRS re-
sponses during an n-back task, a standard memory task in which
participants monitor a stream of individually presented stimuli and
indicate whenever the current stimulus matches the one before (i.e.,
the one on trial n-1; “1-back” task) or the one on trial n-2 (the 2-
back task), and so forth (Smith & Jonides, 1997), as well as during
a complex real-life task, air traffic control. Moreover, in order to
investigate whether it was possible to capture changes in brain ac-
tivity as a function of practice or developing expertise, fNRIS was
measured across nine consecutive days during 2-3 hour sessions dur-
ing which participants learned to manoeuvre a simulated unmanned
air vehicle.

Because the left PFC, located in the inferior frontal gyrus, reflects
working-memory related activity, Ayaz et al. (2012) measured dif-
ferences in fNIRS between high- and low-memory load conditions
from a sensor located above the left PFC, at the inferior frontal
gyrus. Higher oxygenation was observed for a 3-back task than for
a 0- or 1-back task, but not for a 2-back task. Differences in task
demands in the air traffic control task were measured from a differ-
ent site, within the medial PFC, or frontopolar cortex, and showed
a difference in oxygenation when the easy version of the task was
compared to the hard one. Levels of oxygenations changed with in-
crements in task practice in line with the general reduction in brain
activity following practice that has also been observed in imaging
studies (Kelly & Garavan, 2005; Petersen et al., 1998): Average
total haemoglobin measured from the left PFC was higher during
the beginning than during the advanced phase of the training. In
summary, although subtle changes in task load may not always be
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reflected in blood oxygenation differences as measured by fNIRS,
there is promise that fNIRS could be an effective tool for character-
izing task demands.

4.2 Augmented Interaction

As discussed in Chapter 1, identifying neural markers of operator
state that can be used to predict performance in the short-term is
one of the most important goals in neuroergonomics. With regards
to attention, much evidence for the existence of such markers comes
from fMRI and EEG studies. However, embedding EEG and fMRI
in real-world settings is beset by practical problems. In addition to
cost considerations, these problems include that fMRI, in particular,
is not portable, that both EEG and fMRI require trained personnel
for measurement and analysis, and that most research has relied on
averaging across many trials. Moreover, many of the attentional
measures that can be made with fMRI and EEG require nearly
total immobilization of the participant. The susceptibility of the
techniques to motion artefacts have until now precluded the use of
EEG and fMRI in many applied settings, but issues of portability
and embedding of EEG, in particular, are gradually being resolved
(Parasuraman, 2011b).

4.2.1 Brain-computer Interfaces

Much of the excitement about the use of EEG and other methods
to trace correlates of attention in real-time comes from research on
brain-computer interfaces (BCIs; also referred to as brain-machine
interfaces, or BMIs). Brain-computer interfaces rely on measure-
ment of brain activity to interact with a computer. A BCI aims
to support, enhance, or substitute human function to “elevate the
computer to a genuine prosthetic extension of the brain” (Vidal,
1973, p. 158). In general, a BCI translates brain activity into com-
puter commands (Cecotti, 2011). Most BCI applications have been
clinical in nature. For example, Donchin and colleagues (Donchin,
Spencer, Wijesinghe, 2000; Farwell & Donchin, 1988) describe how
locked-in patients (patients who are essentially immobilized and un-
able to speak) could learn to use a “P300 speller”. The P300 speller
works on the principle that the appearance of an infrequent target
evokes a P300. In the original P300 speller, a 6 x 6 matrix of charac-
ters is presented. The patient is to focus attention on just one of the
36 characters (the one they wish to “spell”) while the intensity of
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the individual rows and columns of the matrix are intensified one at
a time in a rapid (e.g., 100 ms with 75 ms between intensifications),
random sequence. The probability that a row or column containing
the target is intensified is one in six. Because targets are rarely
highlighted, they can be considered “oddballs” and should elicit a
P300 (Donchin, 1981). The relatively rare highlighting of the target
stimulus in the random sequence of stimuli constitutes an oddball
paradigm (ref), and the target will thus elicit a P300 response to
the target stimulus. The EEG of the patient is measured while the
task is performed, and the P300 is computed on-line and linked to
the symbol that evoked it. The interface then displays the selected
letter. Research on the P300 speller illustrates many characteristics
of BCI research.

Since the introduction of the P300 speller, much work has been
done to improve the on-line calculation and classification of the P300
and to improve the speed of spelling (e.g., Allison & Pineda, 2006;
Cecotti, 2011; McFarland, Sarnacki, Townsend, Vaughan & Wol-
paw. 2011; Pires, Nunes & Castelo-Branco, 2012). Spelling devices
have also been based on the visual SSEP (Gao, Xu, Cheng, Gao,
2003). SSEP-based spelling devices use the changes in amplitude
of the SSEP evoked by an object presented on an oscillating back-
ground to determine what object or command is receiving attention.
Stimulus selection requires simply that attention be focussed on the
oscillating background of the desired command. The major advan-
tage of SSEP-based BCI in comparison with other systems is that
a lengthy calibration period (during which the user learns to make
the appropriate responses and the classifier is taught’ to recognize
them) is not required: The system is ready to spell as soon as the
participant has been prepared for EEG acquisition.

SSEP-based BCIs have also been used for tasks such as map-
based navigation (Bakardjian, Tanaka, & Cichocki, 2010), control
of neuroprosthetic devices (Muller-Putz & Pfurtscheller, 2008), and
video games (Lalor et al., 2006). Importantly, whereas in the P300
speller attention can be directed toward only one command at a
time, in a SSEP-based BCI attention can be directed toward mul-
tiple commands simultaneously. However, simultaneous execution
of different commands has not yet been introduced to SSEP-based
BCIs. Moreover, it appears that part of the activity driving the
SSEP in these applications is related to eye movements (Cecotti,
2011). Given that eye tracking also has the potential of establishing
which object the operator is focusing on–and enjoys the advantage
of being simpler to use and analyse than EEG–it still needs to be
proven that the SSEP gives more information than eye movements
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alone.

Still other types of spellers are based on imagined movement
as, for example, moving the right hand or the left foot (Ramoser,
Muller-Gerking, & Pfurtscheller, 1999). Motor-imagery BCI uses
spatial information in the EEG that is available because activity
related to lateralized movements is also lateralized in the brain, and
hand and foot movements are represented in different brain loca-
tions. Motor-imagery BCI is based on identifying the brain state
correlated with thinking of a lateralized movement and using this
information to send commands to the computer. For example, in
the Hex-o-spell graphical user interface (Muller et al., 2008) the par-
ticipant attempts to control a cursor displayed on the centre of the
screen which rotates when, for example, the participant imagines
moving the right hand and stops when the user imagines moving
the left hand. The goal is to point the cursor to one of six hexagons
arranged around a circle to select a command within that hexagon.
Once a hexagon is selected, the commands within that hexagon are
distributed around the circle such that just one command is in each
of the hexagons around the circle (see Figure 4.2.1).

BCIs based on motor imagery are active BCIs, because the brain
activity used by the BCI system is generated by the user indepen-
dently of external events (Zander & Kothe, 2011). SSEP- and P300-
based BCIs are instead reactive BCIs, in the sense that a brain re-
sponse is evoked by an external stimulus (an oscillation or an oddball
stimulus, respectively). In some senses active BCIs can be consid-
ered a more “pure” form of brain-machine communication because
the user evokes a brain state and the machine interprets the user’s
state. Active BCIs are, however, susceptible to BCI illiteracy (Klu-
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ber & Muller, 2007), the phenomenon that only some users can learn
how to interface with the machine.

To solve the problem of BCI illiteracy recent approaches have
combined different types of BCI in one, hybrid BCI (Pfurtscheller
et al., 2010). Brunner et al. (2010), for example, created a model
hybrid BCI based on SSEP and motor imagery. The model was
based on EEG data of participants who had been shown arrows and
instructed either to imagine moving the corresponding hand (e.g.,
left-pointing arrow = imagine left hand movement) or to pay at-
tention to a set of spatially corresponding, flickering light emitting
diodes (LEDs; e.g., left-pointing arrow = attend LEDs on the left
side of the computer screen), or to do both. The performance of the
model was better when both the motor imagery and SSEP signals
were used than when only one of the signals was used. Moreover,
the authors showed that this was not an artefact due to the fact
that more data was supplied to the classification algorithm. How-
ever, in a follow-up study in which the hybrid BCI was actually
implemented on-line, the performance of the hybrid BCI was less
promising than in the simulation study (Brunner, Allison, Altstat-
ter, & Neuper, 2011). In fact, the performance of the hybrid BCI
was not significantly better than the performance of an SSEP-based
BCI. Moreover, participants reported that using the hybrid BCI
was more difficult than using the SSEP-based BCI, which is likely
a result of dual-task interference due to having to imagine hand
movements while focusing attention on the LEDs.

Other researchers have proposed applications of BCI based on the
fMRI signal (Weiskopf,et al., 2004a). The fMRI allows a very fine-
tuned analysis of the spatial distribution of brain activity (Haynes
& Rees, 2006; Spiers & Maguire, 2007), and therefore could poten-
tially be used to implement more BCI commands than an inter-
face using EEG. Moreover, recent developments in fMRI research
suggest that the time constraints associated with acquiring and
processing an MRI image (approximately 1 second) do not pose
a significant limitation for the analysis of the signal in real-time.
Weiskopf et al. (2007), for example, showed that fMRI can be used
for self-regulation of brain activity, or neurofeedback (Weiskopf et
al., 2004b). Factors which have prevented fMRI-based BCI from
becoming more popular than EEG are that fMRI is more expen-
sive, less portable, requires more training, and relies more heavily
on skilled personnel than EEG.
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4.2.2 Adaptive Interfaces

Whereas BCI research, as such, has focussed mostly on clinical ap-
plications or on active and reactive BCIs, research on adaptive in-
terfaces focuses on using information about operator state to allo-
cate tasks to the operator versus the machine in work environments
(Sheridan, 2011). Adaptive interfaces can be viewed as an exten-
sion of the person, or a machine interacting with the person, rather
than a human and a machine trying to control each other. Adap-
tive interfaces are intended for use in any environment in which
tasks or processes are partly or fully automated. Such a system re-
quires that information about operator state can be measured and
classified in real-time and that some tasks can be allocated to ei-
ther the human operator or to the machine itself. Adaptive systems
have the potential to solve problems of operator underload and over-
load (Parasuraman, 2011b; Young & Stanton, 2002a, b). When an
operator is underloaded, arousal levels may decrease below a de-
sired level or an operator may become complacent and fall “out of
the loop”, losing situation awareness as a result (Wiener & Curry,
1980). Effects of overload include excessive mental workload (de-
fined as the difference between the processing demands imposed by
a task and the resources available to the operator at a given point in
time), stress or other costs of compensating for the need to maintain
primary task performance (Halpern et al., 2009; Lim, Wu, Wang,
Detre, Dinges et al., 2010; Matthews et al., 2000; Sperandio, 1978),
or performance decrement. Accurate, on-line assessment of men-
tal workload has the potential to reduce human error by signalling
overload (or underload) and may provide data that can be used to
modify the task environment to match the available resources of the
operator to task demands.

Most work on adaptive interfaces takes the approach of measur-
ing mental workload on-line, and classifying load as either too low
or too high (e.g, Byrne & Parasuraman, 1996). In order to create an
adaptive system, one must therefore have a reliable indicator of load
and a means of calculating load on-line. In the past several decades,
most research has focussed on cardiovascular and EEG measures.
For example, the amplitude of the P300 component of the ERP,
which reflects the classification of a target object (Donchin, 1981),
has been shown to be sensitive to workload. The P300 is an at-
tractive option in adaptive automation because it is sensitive to the
momentary demands of the task. The added value of the P300 as
an indicator of workload was demonstrated by Prinzel, Freeman,
Scerbo, Mikulka, and Pope (2003). They had participants perform
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a compensatory tracking task together with an auditory oddball
task. EEG was measured, and the tracking task was switched from
a manual to an automated mode based on the engagement index
(Pope et al., 1995). Performance of those for whom the adaptive
automation was based on the engagement index was better than for
yoked control participants (i.e., participants who received the same
automation schedule as that of a participant in the EEG group).
ERPs were computed offline, and the P300 evoked by the audi-
tory oddball stimulus was found to parallel the sensitivity to task
demands of the performance and subjective measures across condi-
tions.

The measurement of EEG may also provide insight into dual-task
demands. In one study of changes in workload due to dual-task
demands, Lei and Rottingen (2011) measured the EEG of people
who were driving in a driving simulator while performing an n-back
task. The difficulty of the driving and n-back task were manipulated,
and modulations of the EEG spectrum evoked by the changes in task
difficulty were measured. Lei and Rottingen found that alpha power
was attenuated and theta power was increased when workload was
high as compared to when it was low. Most importantly, the changes
in power depended on which task was manipulated, with changes in
alpha power being more sensitive to workload changes during the
driving task and changes in theta power being more sensitive to
workload changes in the n-back task. These results suggest that it
may be possible to use combinations of different frequency bands
to determine which tasks should be supported. The results also
suggest that the use of a combination of different frequencies, as
in the engagement index (Pope et al., 1995), may provide a more
general and reliable estimate of mental workload than reliance on
any one frequency band.

Basing adaptive support on cardiovascular measures such as heart-
rate variability (which decreases as workload increases; Tattersall &
Hockey, 1995) is less intrusive and therefore potentially more widely
applicable than EEG-based adaptive support. For example, cardio-
vascular measures might be used to make the task of the ambulance
dispatcher easier. Ambulance dispatching requires that emergency
situations be understood and that ambulances be dispatched to ac-
cident sites as promptly as possible while keeping coverage of the
region of which the operator is in charge. Mulder, Dijksterhuis,
Stuiver, and de Waard (2009) showed that it was possible to track
workload in an ambulance-dispatching task simulator with measures
such as heart-rate variability. However, the task support they pro-
vided in high-workload conditions (shading the area on a map of
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the region being monitored that an ambulance could cover within
15 minutes) did not result in performance improvements. These
results point to a challenge in adaptive automation: Knowing that
the operator is overloaded is not enough–there must also be a means
available of supporting the operator in a meaningful way.

A marker of resource investment discussed earlier in this chapter
is pupil dilation. Pupil dilation has been used together with eye-
movement activity to measure workload in applied settings. When
people observe a screen or display, scan paths are characterized by a
certain amount of randomness, or, entropy. One important finding
is that scan-path randomness is inversely related to workload (Har-
ris, Glover, & Spady, 1986): As workload increases, scanning pat-
terns become more stereotyped. Whether or not performance suf-
fers will depend on whether the relevant information is still viewed
as scan paths become more stereotyped. Hilburn, Jorna, Byrne,
and Parasuraman (1995) used scan-path randomness–together with
pupil dilation and heart-rate variability–in an adaptive decision aid-
ing system for air-traffic control. When high workload was detected
support was provided by reallocating part of the human task to the
machine (for similar applications based on the relationship between
eye-movements and workload see, e.g., Alhstrom & Friedman-Berg,
2006; Stasi, Marchitto, Antoli, Baccino, & Canas, 2010).

Multiple workload indices were also used in a study by Hwang et
al. (2008) in which the workload of operators performing the shut-
down procedure for a nuclear power plant was measured. Hwang et
al. estimated workload from a combination of measures which in-
cluded parasympathetic/sympathetic ratio, heart rate, and diastolic
and systolic blood pressure (all of which tend to increase as work-
load increases), and heart-rate variability and eye-blink frequency
and duration (all of which tend to decrease as a function of increas-
ing workload). The different indices were used as input to a neural
network model, and the model was run to determine the contribu-
tion of each parameter to workload in the task (the procedure by
which the weights were assigned can be likened to the estimation of
coefficients in a multiple regression model). All seven of the predic-
tors used by Hwang et al. were found to contribute significantly to
the capacity of the neural network model to discriminate between
workload states.
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4.3 Augmenting Attention, and Cognition

New technologies (e.g., medical scanning technology and unmanned
military drones) are producing an unprecedented number of complex
images. Humans outperform machines in processing these images,
but are limited in the number of images that they can process in
a given amount of time. An important issue is thus how target
detection (whether of a tumour or a weapons installation) can be
enhanced. It is beginning to be evident that neuroergonomics can
take up this problem where image processing leaves off. For exam-
ple, Gerson, Parra, and Sajda (2006) describe an EEG-based BCI
that can be used to make a selection of images presented to ob-
servers in rapid serial visual presentation to be re-presented to the
observers for additional analysis. The BCI can classify in real-time
a stereotypical spatiotemporal response associated with targets (in
this case, natural scenes containing people as opposed to unpopu-
lated scenes). Images identified as potentially containing targets can
then be examined in detail. Such a technique has the advantage of
allowing large numbers of images to be scanned quickly (the typical
presentation rate is 100 ms per item), leaving time to devote to the
further processing of potential targets. The accuracy of classifica-
tion of targets embedded in scenes presented in rapid serial visual
presentation may be able to be increased by using pupil diameter
measures in addition to the EEG response (Qian et al., 2009). Using
classifiers to triage images has the potential to help image analysts
who must classify many images and promises reductions in detection
time and improvements in detection accuracy.

Another ambitious project for enhancing cognition is the attempt
to implement binoculars with image processing functionality. The
United States defense department is currently working to develop
image-enhancing binoculars under the name “Cognitive technology
threat warning system” (CT2WS). The aim of the CT2WS project is
to support soldiers in identifying possible threats. Real-time EEG
signals, measured via an in-helmet EEG system are subjected to
algorithms to classify the visual inputs gathered through the binoc-
ulars. The program uses saliency maps (Kock & Ullman, 1985), first
developed as a computational model of bottom-up attentional selec-
tion, as the basis for threat-detection. The saliency map algorithm
analyses the visual information the soldier is seeing and determines
which information is the most salient by decomposing the visual
information into saliency maps. A saliency map combines elemen-
tary features such as color, orientation, direction of movement, and
disparity to determine which objects in a visual scene are salient.



4.3. AUGMENTING ATTENTION, AND COGNITION 55

In the CT2WS context, the saliency map selects potential targets
from the visual scene. When the soldier views a scene, the saliency
map algorithm marks potential threats, and the EEG of the soldier
is monitored to determine whether or not a threat is perceived. For
example, the saliency map presented to a soldier looking into a forest
may identify a deer or a tank, both of which have features which dis-
tinguish them from the surrounding trees. Because the saliency map
itself cannot distinguish between objects–the EEG signal evoked by
the soldier in response to the two “threats” is used to classify objects
as friend or foe. The process of threat identification is monitored by
a learning algorithm to optimize the identification process. The al-
gorithm is adaptive in the sense that it learns the combination of the
EEG response and the stimulus which evoked it, thereby optimizing
the classification capacity of the threat-detection algorithm.

4.3.1 Enhancing Attention Through Training

Improving attentional state through “brain training” has a long and
venerable history. Neurofeedback, a form of biofeedback in which
some feature of an individual’s brain activity (e.g., alpha rhythm) is
made visible to the participant (e.g., via a ball that bounces higher
as alpha synchronizes), has been used to treat children with atten-
tion deficit/hyperactivity disorder (ADHD) since the 1970s (e.g.,
Lubar & Shouse, 1977). In neurofeedback some aspect of the EEG,
such as the amplitude of the alpha rhythm, is used to change the
state of the displayed activity, such as the bounce of the ball. As
the person learns to make the ball bounce faster or higher, alpha
amplitude is either increased or decreased, depending on the goal of
the neurofeedback (e.g., Hardt & Kamiya, 1976; see Weiskopf et al.,
2004, for an example using fMRI).

In the case of ADHD, neurofeedback has been used to increase
or decrease the amplitude of alpha, beta, and theta oscillations.
Children with ADHD show spectral abnormalities in the EEG, such
as increased frontal theta amplitude and decreased alpha and beta
oscillations, in comparison to non-ADHD children (Clarke, Barry,
McCarthy & Selikowitz, 1998). Lubar, Swartwood, Swartwood, and
O’Donnel (1995) showed that training children to increase the am-
plitude of the upper alpha rhythm (12-15 Hz; also referred to as the
sensorimotor rhythm) and the lower beta rhythm (15-18 Hz) can
enhance sustained attention and alleviate the symptoms of ADHD.
In fact, neurofeedback training of the sensorimotor and lower beta
rhythm may improve the functioning of ADHD sufferers to the
same extent as does medication by methylphenidate (a commonly
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used psychostimulant; Fuchs, Birbaumer, Lutzenberg, Gruzelier, &
Kaiser, 2003). Importantly, the effects of neurofeedback training are
persistent and more long-lasting than the administration of medi-
cation, suggesting that brain training can have powerful effects on
attention and behaviour (Tang & Posner, 2009).

Neurofeedback training has also been shown to improve cogni-
tive performance in non-clinical populations. Using a mental rota-
tion task, for example, Hanslmayr, Sauseng, Doppelmayr, Schabus,
and Klimesch (2005) found that neurofeedback training of the al-
pha rhythm improved task performance. Hanslmayr et al. used
neurofeedback to train their participants to maximally synchronize
upper alpha rhythm (12-15 Hz)–indicating a relaxed state– in the
interval between the task trials. This neurofeedback training led
to improvements in task performance, but only for the participants
who were successful in learning to increase their alpha response.
Enhancement with neurofeedback has also been found for memory
task performance (Lantz & Sterman, 1988), attention tasks (Egner
& Gruzelier, 2004), and memory capacity (Vernon et al., 2003).

It may also be possible to train attention using basic cogni-
tive tasks. Rueda, Rothbart, McCandliss, Saccomanno, and Posner
(2005) devised a training module to augment executive attention in
children (4 and 6 years old). The training program involved a series
of exercises such as object tracking, Stroop-like exercises, discrimi-
nation of stimuli, anticipations of events, and resolution of conflict.
ERPs were measured before and after the five-session training pro-
gram during the performance of the attention network task (ANT;
Rueda et al., 2004). The ANT is a modified flanker task (i.e., a
task in which a target must be attended and distractors assigned
to a competing response must be ignored) which measures atten-
tion orienting, alerting, and the capacity to resolve conflict. Rueda
et al. found a general benefit of the training when comparing the
performance of the group receiving training against the group not
receiving training. However, the effect of training was largely lim-
ited to the four-year old children, which suggests that such training
is beneficial only in early stages of development.

Although the benefits of the type of training given by Rueda
et al. (2005) may be restricted to young children, training of at-
tentional skill has been shown, in some studies, to transfer across
tasks in adults, as well. For example, several studies have shown
that playing “first-person shooter” action video games may improve
performance in basic attentional tasks such as the flanker task, at-
tentional blink task (detecting two targets presented in rapid serial
visual presentation), and an enumeration task (e.g., Green & Bava-
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lier, 2003). Green and Bavalier reported that people who habitually
played action video games spread attention more widely in time
and space than non-gamers. However, many attempts to replicate
findings such as these have failed (e.g., Murphy & Spencer, 2009;
see Boot, Blakely, & Simons, 2011, for a critical meta-analysis of
improved cognition after video-gaming).

There is promising work showing that attention can be enhanced.
It may also be possible to identify when one is most likely to be able
to learn new material and to capitalize on these “optimum learn-
ing” moments. A person’s ability to remember new information
changes from moment to moment (Corkin, 2002). Yoo et al. (2012)
used this fact to select optimal learning intervals by monitoring the
activity of brain areas associated with the formation of memories.
The parahippocampal cortex (PHC), located in the medial tem-
poral lobe, is responsible for the successful formation of memories
of scenes, as reflected by greater PHC activation for remembered
than forgotten scenes (Brewer, Zhao, Desmond, Glover, & Gabrieli,
1998). Moreover, prestimulus activity in a particular area of the
PHC, the parahippocampal place area (PPA), is correlated with
successful memory for scenes. Yoo and collaborators measured PPA
activity in real time to determine when good or poor time intervals
in which to present information occurred. They found that mem-
ory for scenes was significantly better for scenes presented during
good time intervals (indicated by low PPA activity) as compared to
scenes presented during poor time intervals (indicated by high PPA
activation).

4.3.2 Using Drugs to Enhance Attention

Using drugs to enhance cognitive ability may be becoming as preva-
lent as doping in sports. The question is whether some cognition
enhancing drugs have a place in healthy human performance. One
drug, caffeine, has a long and proven history of use as a perfor-
mance enhancer. One recent study using the ANT (Fan et al.,
2002), for example, demonstrated that caffeine improves the atten-
tional functions of alerting and executive control, although a too-
high dose of caffeine (400 mg) hurts orienting of attention (Bruny,
Mahoney, Lieberman, & Taylor, 2010). Despite the fact that caf-
feine is widely accepted in Western societies, a new trend toward
the use of drugs originally designed to alleviate symptoms associ-
ated with neuropsychological impairments by individuals hoping to
boost cognitive capacities gives cause for concern (see Sahakian &
Morein-Zamir, 2007). Drugs used to treat ADHD, in particular, are



58 CHAPTER 4. ATTENTIONAL RESOURCES AND CONTROL

increasingly being used by students to improve concentration when
cramming for exams (Babcock & Byrne, 2000), and other stimu-
lants are used by long-haul truckers (da Silva, de Pinho, de Mello,
de Bruin, & de Bruin, 2009). or by aircrew members on military
missions (e.g., Ramsey, Werchan, Isdahl, Fischer, & Gibbons, 2008).
Another commonly used drug, Modafinil, promotes wakefulness and
is used by people with disturbed sleeping patterns (e.g., due to jet
lag, shiftwork, or sleep apnea; see Chapter 6), but also by people
hoping to improve their ability to concentrate (Sahakian & Morein-
Zamir).

Individuals vary in how they react to different drugs. For exam-
ple, bromocriptine, a dopamine agonist, enhances various executive
functions for low-working memory capacity individuals, but has a
detrimental effect on the performance of high-working memory ca-
pacity individuals (Kimberg, D’Esposito, & Farah). The fact that
different people react differently to the same drugs makes it diffi-
cult to specify a general protocol for the use of drugs to enhance
cognitive function, and uncertainty about the long-term effects var-
ious drugs might have, as well as ethical considerations (see Chapter
1), put into question the desirability of recommending performance
enhancement for healthy human operators.

4.4 Conclusion

In nearly all tasks, adequate performance depends on the availabil-
ity of attentional resources and the appropriate allocation of atten-
tion. Many techniques to measure attention have been developed.
Some of these measures (such as pupil dilation and the EEG-based
engagement index) are non-specific in that they reflect the degree
of arousal of a person or the overall effort being exerted whereas
others (such as the P300) are specific to the processing of a partic-
ular stimulus. Much work has focussed on using these measures to
improve basic attentional skills or task performance. Physiological
measures of mental workload, in particular, have been applied in
adaptive automation. Neurofeedback and BCIs have, to date, pri-
marily seen clinical applications, but the techniques being developed
show promise for augmentation of attentional abilities and improve-
ments in perception and cognition. The extent to which attention
can be augmented by training, drugs, or neurofeedback remains con-
troversial. Exciting lines of research do, however, suggest that basic
abilities can be improved upon. Even if this should turn out not
to be the case, neural and other physiological measures of attention
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are already proving to enhance performance in many tasks by using
data obtained from the operator to modify how stimuli are presented
and processed.
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